A compact fluorescence and polarization near-field scanning optical microscope

نویسندگان

  • G. Merritt
  • E. Monson
  • E. Betzig
  • R. Kopelman
چکیده

We present a transmission, fluorescence, and polarization near-field scanning optical microscope with shear-force feedback control that is small in size and simple to operate. This microscope features an ultrafine mechanical tip/sample approach with continuous manual submicron control over a range of several millimeters. The piezo-driven 12 mm x-y scan range is complimented by a 4 mm coarse mechanical translation range in each direction. The construction materials used in the mechanical feedback loop have been carefully chosen for thermal compatibility in order to reduce differential expansion and contraction between the tip and sample. A unique pressure-fit sample mount allows for quick and reliable sample exchange. Shear-force feedback light is delivered to the scan head via an optical fiber so that a remote laser of any type may be used as a source. This dither light is collimated and refocused onto the tip, delivering a consistently small spot which is collected by a high numerical aperture objective. This new scan head incorporates an optical system which will permit the linearization of scan piezo response similar to a scheme used successfully with atomic force microscopy. This is designed to both overcome the piezo’s inherent hysteresis and to eliminate drift during long duration spatial scans or spectroscopic measurements at a single location. The scan head design offers added flexibility due to the use of optical fibers to deliver the dither and scan linearization light, and functions in any orientation for use in conjunction with upright or inverted optical microscopes. © 1998 American Institute of Physics. @S0034-6748~98!02707-5#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

Multi-detection and polarisation contrast in scanning near.field optical microscopy in reflection

We present a scanning near-field optical microscope operating in reflection suitable for simultaneous bright field and fluorescence imaging. A non-coated pulled optical fibre is used in true reflection mode, i.e. both as emitter and collector. Beam splitters, dichroic mirrors and polarisers are combined to discriminate the different wavelength and polarisation signals. The distance between fibr...

متن کامل

Two-photon microscopy and spectroscopy based on a compact confocal scanning head.

We have combined a confocal laser scanning head modified for TPE (two-photon excitation) microscopy with some spectroscopic modules to study single molecules and molecular aggregates. The behavior of the TPE microscope unit has been characterized by means of point spread function measurements and of the demonstration of its micropatterning abilities. One-photon and two-photon mode can be simply...

متن کامل

Reflection-mode scanning near-field optical microscopy: Influence of sample type, tip shape, and polarization of light

A reflection-mode aperture-type scanning near-field optical microscope ~R-SNOM! based on the external collection of the reflected light is presented. The light detection is based on an elliptical mirror setup, with the tip and sample at one focus, and a photomultiplier tube at the other. Results are presented on the general imaging properties of this microscope. The results presented concentrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998